COMPARISON OF DOUBLE RANDOM FOREST AND LONG SHORT-TERM MEMORY METHODS FOR ANALYZING ECONOMIC INDICATOR DATA

نویسندگان

چکیده

The performance of machine learning in analyzing time series data is being widely discussed. A new ensemble method Double Random Forest (DRF), which considers supervised currently developed. This has been claimed to be able improve the (RF) if under-fitting. Another method, Long Short-Term Memory Networks (LSTMs) have capability analyze nonlinear data. Since study compare both methods not existed literature, it interesting using Indonesian data, especially economic indicator found under-fitting, non-underfitting, and indicators used this are Export, Import, Official Reserves Asset, Exchange Rate results showed that overall, LSTMs outperforms DRF

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Analyzing Impacts of FACTS Devices in Dealing with Short-Term and Long-Term Wind Turbine Faults

More than one hundred countries are using wind energy due to their easy implementation, cheap energy, and high energy efficiency. Implementation of FACTS devices in Wind Energy Conversion Systems (WECS) has been dramatically improved due to cooperative and accurate performance of FACTS devices. However, dealing with wind turbine faults promptly is crucial. Short-term and long-term faults may ha...

متن کامل

Long-term and Short-term Effects of Financial Intermediation on Economic Growth

Financial intermediation in Iran's banking system is negatively affected at least in two ways. First, there are many similarities between financial intermediation and usurious activities in the common interpretation of interest-free banking law. This encourages the banks to participate in various commercial activities. Second, the price setting policies of the central bank makes investment more...

متن کامل

Doubts about double dissociations between short- and long-term memory.

Historically, psychologists and neuroscientists have distinguished between processes supporting memory for events across retention delays of several seconds (short-term memory, STM), and those supporting memory for events across longer retention delays of minutes or more (long-term memory, LTM). Dissociations reported in some neuropsychological studies have contributed to a popular view that th...

متن کامل

Long Short-term Memory

Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Barekeng

سال: 2023

ISSN: ['1978-7227', '2615-3017']

DOI: https://doi.org/10.30598/barekengvol17iss2pp0757-0766